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Logic throughout the history

Wikipedia: Logic is the branch of philosophy concerned with
the use and study of valid reasoning
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Logic throughout the history

Wikipedia: Logic is the branch of philosophy concerned with
the use and study of valid reasoning

Logic started as a part of philosophy

All men are mortal and Socrates in a man, therefore Socrates is mortal
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Logic throughout the history

Wikipedia: Logic is the branch of philosophy concerned with
the use and study of valid reasoning

Since 19th century a part of logic has evolved into mathematical logic

PA 6` ¬∃wProof(w, ‘0̄ = 1̄’)
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Logic throughout the history

Wikipedia: Logic is the branch of philosophy concerned with
the use and study of valid reasoning

Nowadays logic is applied mainly in computer science

` [α](x = 4)→ [α; (x := 2x)](x = 8)
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Logic throughout the history

Wikipedia: Logic is the branch of philosophy concerned with
the use and study of valid reasoning

However its role in the study of human reasoning has been diminished
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What? How? Why now?

Stenning (psychologist) and van Lambalgen (logician) advocate the
indispensability of logic for the study of human reasoning

The key component: the transformation of natural reasoning scenarios
into formalized ones where various logics are directly applicable

‘Natural’ reasoning scenarios could be quite ‘formal’ to start with:
mathematics, game of poker, knowledge of agents

Scenarios of both kinds involve graded notions: tall, red, young, . . .

The problem is that common transformations of natural scenarios
or designs of the formalized ones usually get rid of graduality

Mathematical logic of graded notions is well developed
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As witnessed by 1300 pages of . . .
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I have a vision
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The three layers of my vision

and their three outcomes
(one more ambitious than the other :))

I To study natural reasoning scenarios involving graded notions
and their natural transformations into formalized scenarios

preserving the graduality

Better understanding of (human) reasoning

II To utilize logical methods to analyze and perform reasoning
in formalized scenarios

More powerful formal methods (mainly for CS)

III To advance the logic of graded notions to meet the demands
of the previous goals

Advancement of mathematical logic
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And now a much more humble goals of this talk . . .

First of all, I do not want delve into the nature of grades

Thus, clearly, I cannot say anything about the first goal
and little about the second (yet)

Instead, I will present a ‘logic of graded notions’ starting from some
natural design choices

And accompany it with an example of a formalized reasoning scenario
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What are the ‘notions’? (DC 1)

A language is a quadruple L = 〈C,P,F, ar〉
connectives, predicate and function symbols with their arities

And we build sets of L-terms Term and L-formulas Form as usual,
i.e., as the least sets such that:

object variables ObjVar are terms
if t1, . . . , tn ∈ Term, F ∈ F, ar(F) = n, then F(t1, . . . , tn) ∈ Term

if t1, . . . , tn ∈ Term, P ∈ P, ar(P) = n, then P(t1, . . . , tn) ∈ Form
if ϕ1, . . . , ϕn ∈ Form, c ∈ C, ar(c) = n, then c(ϕ1, . . . , ϕn) ∈ Form
if ϕ ∈ Form and x ∈ ObjVar, then (∀x)ϕ ∈ Form and (∃x)ϕ ∈ Form
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More on languages

There is a well-known difference between the role of connectives and
other syntactical objects.

Let us fix, for this talk, a set of connectives C and their arities

Thus we can speak about predicate languages P = 〈P,F, ar〉

We also consider a special language: the propositional one

L = 〈C, {pi | i ∈ N}, ∅, ar〉, where ar(pi) = 0

Note that L can be seen as an algebraic type
i.e., a classical predicate language 〈∅,C, ar〉
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Where are the grades coming from? (DC 2,3)

I want my semantics to assign some ‘grades’ from a set G to formulas:

‖ · ‖ : Form→ G

Let us also fix the ‘interpretation’ of connectives, i.e., operations

cG : Gn → G for each n-ary c ∈ C

Then we simply set (DC 2)

‖c(ϕ1, . . . , ϕn)‖ = cG(‖ϕ1‖, . . . , ‖ϕn‖)

The classical structure G = 〈G, 〈cG〉c∈C〉 is then an algebra of type L

Finally, let us assume that G is partially ordered (DC3)
some grades are ‘better’ than others
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Generalized semantics (DC 3′, 4)
Consider a ‘normal’ predicate language: P = 〈P,F, ar〉 DC1

Consider an algebra G of type L with a partial order ≤ DC2, DC3

G-structure M for P is tuple M = 〈M, 〈fM〉f∈F , 〈PM〉P∈P〉 where
fM : Mn → M for each n-ary f ∈ F
PM : Mn → G for each n-ary P ∈ P

M-evaluation v: a mapping v : ObjVar→ M; extended to all terms/fle:

‖f (t1, . . . , tn)‖Mv = fM(‖t1‖Mv , . . . , ‖tn‖Mv ) for f ∈ F

‖P(t1, . . . , tn)‖Mv = PM(‖t1‖Mv , . . . , ‖tn‖Mv ) for P ∈ P

‖c(ϕ1, . . . , ϕn)‖Mv = cG(‖ϕ1‖Mv , . . . , ‖ϕn‖Mv ) for c ∈ C

‖(∀x)ϕ(x)‖Mv = inf≤{‖ϕ(x)‖Mv[x→m] | m ∈ M} DC4

‖(∃x)ϕ(x)‖Mv = sup≤{‖ϕ(x)‖Mv[x→m] | m ∈ M} DC4
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Generalized semantics (DC 3′, 4)
Consider a ‘normal’ predicate language: P = 〈P,F, ar〉 DC1

Consider an algebra G of type L with a lattice reduct DC2, DC3′

G-structure M for P is tuple M = 〈M, 〈fM〉f∈F , 〈PM〉P∈P〉 where
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Example
Take the standard MV-algebra [0, 1]� = 〈[0, 1],&,→,∧,∨, 0, 1〉 where

x & y = max{x + y− 1, 0} x→ y = min{1− x + y, 1}

x ∧ y = min{x, y} x ∨ y = max{x, y}

Consider a [0, 1]�-structure with domain M = {1, . . . , 6} and binary
predicate

s

P: ‘x likes y’:

and =: ‘x equals y’:

PM 1 2 3 4 5 6
1 1.0 1.0 0.5 0.4 0.3 0.0
2 0.8 1.0 0.4 0.4 0.3 0.0
3 0.7 0.9 1.0 0.8 0.7 0.4
4 0.9 1.0 0.7 1.0 0.9 0.6
5 0.6 0.8 0.8 0.7 1.0 0.7
6 0.3 0.5 0.6 0.4 0.7 1.0

Narciss(R) ≡df (∀x)Rxx ‖Narciss(P)‖M = 1
Sym(R) ≡df (∀x, y)(Rxy→ Ryx) ‖Sym(P)‖M = 0.4

Trans(R) ≡df (∀x, y, z)(Rxy & Ryz→ Rxz) ‖Trans(P)‖M = 1
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x ∧ y = min{x, y} x ∨ y = max{x, y}

Consider a [0, 1]�-structure with domain M = {1, . . . , 6} and binary
predicates P: ‘x likes y’

:

and =: ‘x equals y’:
PM 1 2 3 4 5 6
1 1.0 1.0 0.5 0.4 0.3 0.0
2 0.8 1.0 0.4 0.4 0.3 0.0
3 0.7 0.9 1.0 0.8 0.7 0.4
4 0.9 1.0 0.7 1.0 0.9 0.6
5 0.6 0.8 0.8 0.7 1.0 0.7
6 0.3 0.5 0.6 0.4 0.7 1.0

ELS(R) ≡df (∀x)(∃y)(Rxy) ‖ELS(P)‖M = 1
EILS(R) ≡df (∀x)(∃y)(Ryx) ‖EILS(P)‖M = 1

ELSE(R) ≡df (∀x)(∃y)(x 6= y ∧ Rxy) ‖ELSE(P)‖M = 0.7
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Consequence (DC5)

Definition ((Sentential) consequence relation)
Let G be an L-algebra with lattice reduct.
Let T ∪ {ϕ} be a set of P-formulas.
Then ϕ is a semantical consequence of T w.r.t. G, T |=G ϕ, if

each G-model of T is G-model of ϕ

Assume, from now on, that L contains a nullary connective 1 DC5

M is a G-model of M |= T if for each M-evaluation v:

‖χ‖Mv is defined for each formula χ and

‖ϕ‖Mv ≥ 1G for each ϕ ∈ T DC5
1G is the least ‘good’ grade
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Consequence (DC5)

Definition ((Sentential) consequence relation)
Let K be a class of L-algebras with lattice reduct.
Let T ∪ {ϕ} be a set of P-formulas.
Then ϕ is a semantical consequence of T w.r.t. K, T |=K ϕ, if

for each G ∈ K, each G-model of T is G-model of ϕ

Assume, from now on, that L contains a nullary connective 1 DC5
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Examples
K logic
{2} classical FOL
(complete) Boolean algebras classical FOL
(complete) Heyting algebras intuitionistic FOL
(complete) SI Heyting algebras intuitionistic FOL + CD
(complete) Heyting chains int. FOL + (ϕ→ ψ) ∨ (ψ → ϕ) + CD
Gödel algebras int. FOL + (ϕ→ ψ) ∨ (ψ → ϕ)
(complete) FLew-algebras affine FOL (w/o expon.)
MV-algebras Łukasiewicz FOL

SI Heyting algebras = Heyting algebras with a coatom
CD: (∀x)(χ ∨ ϕ)→ χ ∨ (∀x)ϕ (x not free in χ)
Gödel algebras = variety generated by Heyting chains
MV-algebras = variety generated by [0, 1]�
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How the propositional logics look like?

Recall propositional language L = 〈C, {pi | i ∈ N}, ∅, ar〉, ar(pi) = 0

Then |=K is a structural consequence relation à la Tarski

, i.e.,

If ϕ ∈ T, then T |=K ϕ (Reflexivity)

If S |=K ψ for each ψ ∈ T and T |=K ϕ, then S |=K ϕ (Cut)

If T |=K ϕ, then σ[T] |=K σ(ϕ) for all substitutions σ (Structurality)

where substitution is any mapping from {pi | i ∈ N} to Form

But |=K need not be finitary, i.e., we do not have

T ` ϕ implies T ′ ` ϕ for some finite T ′ ⊆ T

This is the case e.g. for K = {[0, 1]�}.
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We want propositional logics to be a bit ‘better’ (DC6)

Assume, from now on, that there is a binary operation→ in L st: DC6

x→ y ≥ 1 iff x ≤ y for each A
y is ‘better’ than x IFF x→ y is ‘good’

Then |=K is algebraically implicative à la C and Noguera
and, if finitary, algebraizable logic à la Blok and Pigozzi

,
i.e., we will always have:

|=K ϕ→ ϕ ϕ,ϕ→ ψ |=K ψ ϕ→ ψ,ψ → χ |=K ϕ→ χ

ϕ |=K 1→ ϕ 1→ ϕ |=K ϕ

|=K ϕ ∧ ψ → ϕ |=K ϕ ∧ ψ → ψ χ→ ϕ, χ→ ψ |=K χ→ ϕ ∧ ψ
|=K ϕ→ ϕ ∨ ψ |=K ψ → ϕ ∨ ψ ϕ→ χ, ψ → χ |=K ϕ ∨ ψ → χ

and for each n-ary c ∈ C, formulas ϕ,ψ, χ1, . . . , χn, and each i < n:

ϕ→ ψ,ψ → ϕ |=K c(χ1, . . . , χi, ϕ, . . . , χn)↔ c(χ1, . . . , χi, ψ, . . . , χn)
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How to axiomatize |=K?

Lets us first restrict to propositional languages

If |=K is finitary, than it is axiomatized ‘using’ the quasiidentities
axiomatizing Q(K)
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1st axiomatizability result

Theorem (PC, C. Noguera. JSL 2015)

Let K be a quasivariety
and AX an arbitrary axiomatization of the propositional logic of K.

Then the following are equivalent:
T |=K ϕ

there is a proof of ϕ from T in the axiomatic system:
(P) first-order substitutions of axioms and rules of AX
(∀1) ` (∀x)ϕ(x,~z)→ ϕ(t,~z) t substitutable for x in ϕ

(∃1) ` ϕ(t,~z)→ (∃x)ϕ(x,~z) t substitutable for x in ϕ

(∀2) χ→ ϕ ` χ→ (∀x)ϕ x not free in χ

(∃2) ϕ→ χ ` (∃x)ϕ→ χ x not free in χ
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Why only for such big Ks?
Especially if we know that for finitary |=K and propositional languages:

|=K = |=Q(K)

Consider K being the class of Heyting chains:

Then ϕ ∨ ψ |=K ((∀x)ϕ) ∨ ψ but ϕ ∨ ψ 6|=Q(K) ((∀x)ϕ) ∨ ψ

Other example: the set {ϕ | |=[0,1]� ϕ} is coNP-complete for
propositional languages but Π2-complete in general

while {ϕ | |=Q([0,1]�) ϕ} is Σ1-complete

But at least we will have soundness:

|=K ⊇ |=Q(K) = `
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When can we axiomatize a logic based on ‘smaller’
class? (let us restrict to countable predicate languages)

Theorem
Let K be a class of L-algebras and for each countable A ∈ Q(K) there
is a σ-embedding of A into some B ∈ K. Then

|=K = |=Q(K)

This condition is not necessary, only sufficient.

A function f : A→ B is a σ-embedding if:

f is one-one

f (cA(a1, . . . , an)) = cB(f (a1), . . . , f (an)) for each n-ary c ∈ C

for each X ⊆ A, if inf≤A X exists, then f (inf≤A X) = inf≤B f [A].

for each X ⊆ A, if sup≤A X exists, then f (sup≤A X) = sup≤B f [A].
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Theorem (PC, C. Noguera. JSL 2015)
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2nd axiomatizability result

Theorem (PC, C. Noguera. JSL 2015)

Let K be a class of all chains in the quasivariety K generates
and AX an arbitrary axiomatization of the propositional logic of K.
Then the following are equivalent:

T |=K ϕ

there is a proof of ϕ from T in the axiomatic system:
(P) first-order substitutions of axioms and rules of AX
(∀1) ` (∀x)ϕ(x,~z)→ ϕ(t,~z) t substitutable for x in ϕ

(∃1) ` ϕ(t,~z)→ (∃x)ϕ(x,~z) t substitutable for x in ϕ

(∀2) χ→ ϕ ` χ→ (∀x)ϕ x not free in χ

(∃2) ϕ→ χ ` (∃x)ϕ→ χ x not free in χ

(∀2)∨ (χ→ ϕ) ∨ ψ ` (χ→ (∀x)ϕ) ∨ ψ x not free in χ and ψ

(∃2)∨ (ϕ→ χ) ∨ ψ ` ((∃x)ϕ→ χ) ∨ ψ x not free in χ and ψ
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When can we axiomatize a logic based on a ‘smaller’
class of chains? (let us restrict to countable predicate languages)

Theorem
Let K be a class of L-chains and for each countable chain A ∈ Q(K)
there is a σ-embedding of A into some B ∈ K. Then

|=K = |=Q(K)

Again, this condition is not necessary, only sufficient.
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A summary of this section

We have designed ‘logics of graded notions’ based on design choices:

DC1 the syntax is almost classical; we only consider an arbitrary set L
of propositional connectives

DC2 connectives have truth-functional interpretations
DC3′ some grades are better than others and for each two grades there

is the best (worst) grade worse (better) than both of them ∧,∨ ∈ L
DC4 quantifiers are interpreted using infima and suprema over the set

of instances of the formulas quantified
DC5 some grades are ‘good’; the logic/consequence is the transition of

‘goodness’; and there is the least ‘good’ grade 1 ∈ L
DC6 the order of grades and the set of good grades are mutually

definable using implication → ∈ L

We have axiomatized, in some cases, the resulting logics
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Andrey Kolmogorov Jan Łukasiewicz
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Let us start with semantics . . .

A

probabilistic

Kripke model is a system M = 〈W, 〈ew〉w∈W

, µ

〉 where

W is a set (of possible worlds)
for each w ∈ W, ew is a classical evaluation

µ is a finitely additive probability measure defined on a sublattice
of 2W which contains the set {w | ew(ϕ) = 1} for each classical ϕ

Example: set W = {1, . . . , 6} and consider variables v1, . . . , v6, vodd, v≥5

ei(vj) =

{
1 if i = j

0 othrw.
ei(vodd) =

{
1 if i ∈ {1, 3, 5}

0 othrw.
ei(v≥5) =

{
1 if i ≥ 5

0 othrw.

µ(A) =
|A|
6
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Syntax: ‘notions’ could be quite different

We distinguish three different kinds of formulas:

classical: built from atoms using classical connectives: →,¬,∨

atomic fuzzy: of the form �ϕ, for a classical formula ϕ

fuzzy: built from atomic ones using Łukasiewicz connectives
→�,¬�,↔�,⊕,	
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Computing truth values in M = 〈W, 〈ew〉w∈W , µ〉

Truth value of non-modal formula ϕ in a world ϕ:

||ϕ||M,w = ew(ϕ)

Truth value atomic modal formula �ϕ in M:

||�ϕ||M = µ({w | ||ϕ||M,w = 1})

Truth value other modal formulas in M:

||¬�γ||M = 1− ||γ||M
||γ →� δ||M = min{1, 1− ||γ||M + ||δ||M}
||γ ↔� δ||M = 1−max{||γ||M − ||δ||M, ||δ||M − ||γ||M}
||γ ⊕ δ||M = min{1, ||γ||M + ||δ||M}
||γ 	 δ||M = max{0, ||γ||M − ||δ||M}
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Axiomatization

Theorem
Let δ be a fuzzy formula. Then ||δ||M = 1 for each probabilistic Kripke
model M if and only if δ is provable in the axiomatic system:

the axioms of classical logic for classical formulas

the axioms of Łukasiewicz logic for fuzzy formulas

modus ponens for both classical and Łukasiewicz implication

additional rules:

from ϕ→ ψ infer �ϕ→ �ψ from ϕ infer �ϕ

additional axioms:

�(¬ϕ)↔� ¬��ϕ �(ϕ ∨ ψ)↔� (�ψ ⊕ (�ϕ	�(ϕ ∧ ψ)))
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Future work: the ‘logical’ part

extending the scope of our results
generalizing other usual classical results

I developing model-theory of our structures
I studying the usual strengthenings of classical FO

studying genuinely ‘non-classical’ aspects of our approach:
I safe structures
I unusual forms of Skolemization, Herbrand theorem etc.
I witnessed structures
I generalized quantifiers

exploring connections to other approaches to non-classical FOL:
I those close in spirit to ours; e.g. Ono’s treatment of first-order

substructural logics
I those based on some kind of Kripke semantics
I categorial approaches
I game-theoretic semantics
I continuous model theory
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Future work: the vision

∞

Join us, and together we can turn it into a program
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A bit of propaganda:
The Czech Society for Cybernetics and Informatics

The society objectives center on support and promotion of cybernetics,
informatics and related fields, advancing the professional standing of
its members, providing services to its members, and support of
conferences, seminars and other activities.

Working group for logic, probability and reasoning studies both
the theoretical foundations of logic and probability theory and
also their applications, mostly in

I modeling of human reasoning and interaction and social behavior
I computer science
I artificial intelligence
I data mining and
I economy
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